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EFFECT OF THROAT BLEED ON THE SUPERSONIC PFBFORMA.NCE 

OF A HAW-CONICAL SIDE-INLET SYSTEM 

By Leonard E. S t i t t ,  Frank X. McKevitt 
and Albert B. Smith 

SUMMARY 

An experimental invest igat ion was conducted a t  Mach numbers of 2.0, 
1.8, and 1.5 t o  determine the  e f f ec t s  of several  throat  boundary-layer 
bleed configurations on t he  performance of a 25O half-conical  s ide- inle t  

rl system. The e f f ec t s  of several  f lush-s lot  configurations and a porous- 
& surface bleed were determined over ranges of angle of a t t ack  and bleed- 
u - duct and main-duct mass flow. A t  Mach number 2.0, a f lush-s lot  system 

showed an increase i n  propulsive th rus t  of 4 percentage points over the  
no-bleed configuration. The various bleed systems t e s t ed  did  not, i n  
general, reduce t he  total-pressure d i s to r t ions  a t  t he  d i f fuser  e x i t  but  
did decrease the  s tab le  subc r i t i c a l  inlet-mass-flow range. 

INTRODUCTION 

Removal of the  compression-surface boundary layer  a t  the  throat  of 
a supersonic d i f fuser  may of fe r  increases i n  total-pressure recovery 
suf f ic ien t  t o  outweigh the  drag penal t ies  t ha t  t h i s  bleed system might 
impose ( r e f s  . 1 and 2) . Also a half  -cone on-fuselage configuration i s  
an e f f i c i e n t  s ide  i n l e t  provided t ha t  ample provision i s  made t o  prevent 
the  entry  of t he  fuselage boundary layer i n t o  the  ducts ( ref .  3). These 
features  were incorporated i n  a proposed supersonic airplane,  a one-sixth 
scale  model of which was t e s t ed  i n  the  Lewis 8- by 6-foot supersonic wind 
tunnel. Both porous-material and f l u sh  s l o t s  were used as throat  bleeds. 
For comparison, a no-bleed i n l e t  was a l so  tes ted.  The r e su l t s  of t h i s  
investigation,  f o r  ranges of angle of a t tack and main-duct and bleed-duct 
mass flow at Mach numbers of 2.0, 1,8, and 1.5, a re  reported herein. 



- - -  

a . * a  
NACA RM E55~07 

w 

SYMBOLS 

The following symbols a re  used i n  t h i s  report :  

a rea  

'Da 
axial-force coeff ic ient ,  D ~ / ~ &  

Da a x i a l  force  

increment of a x i a l  force between minimum and operating point 

Ds drag associated with discharging bleed flow through a sonic e x i t  
p a r a l l e l  t o  free-stream direct ion 

Fn engine th rus t  at d i f fuser  total-pressure recovery 

Fn, i engine t h ru s t  a t  100-percent d i f fuser  to ta l -pressure  recovery 

L length of .subsonic di f fuser ,  38.2 in .  

2 length of nose ahead of flow survey s ta t ion,  40.6 in .  

M Mach number 

m mass flow 

t o t a l  pressure 

p i t o t  pressure 

s t a t i c  pressure 

dynamic pressure, yph12/2 

ve loc i ty  

weight flow 

distance from cowl . l ip  

distance normal t o  fuselage 

angle of a t tack-with  respect  t o  fuselage reference l i n e  . .- 1. . 
spec i f ic  hgat of air, 1.4 

r a t i o  of t o t a l  pressure t o  NACA standard sea-level  pressure of 
2116 lb/sq f t  
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8 r a t i o  of t o t a l  temperature t o  NACA standard sea-level  temperature 

of 518.7' R 

z cowl-Lip parameter, angle i n  degrees between cone t i p  and cowl 
l i p  

Q angle of l o c a l  flow with respect  t o  i n l e t  center l ine  

Subscripts : 

0 free-stream 

1 conditions at flow s e v e y  s t a t i on  40.6 

3 conditions a t  d i f fuser-exi t  survey s t a t i on  71.1 

b bleed 

x conditions a t  x distance from cowl l i p  

. . ' . I  . ,' 1 , , ,; ',,:: 4 , '2 .. -a . ] . .. . R i l  ' '8 L 
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Pert inent  Areas : 
U 

Af maximum f r o n t a l  cross-sectional  area, 0.663 sq f t  

Ai projected cowl-lip area  of both i n l e t s ,  0.129 sq f t  f o r  el = 40°, 
0.151 sq f t  f o r  , e l  = 38' 

A3 
dif fuser-exi t  area, 0.161 sq f t  

APPARATUS AND PROCEDURE 

The one-sixth scale  twin-duct fuselage forebody model used i n  t h i s  
invest igat ion ( f i g .  1) was mounted through an i n t e rna l  strain-gage 
balance t o  a s t r u t  i n  t he  Lewis 8- by 6-foot supersonic wind tunnel. An 
extension t o  the  fuselage was connected t o  t h e  s t i ng  but was mechanically 
independent of the  model and balance. This extension was used t o  protect  
the  various actuating mechanisms and the  instrumentation at  t he  r ea r  of 
the  model. Also on the  extension were four reverse scoops (one of which 
i s  v i s i b l e  above the  l e f t  i n l e t  i n  f i g .  1 )  used t o  lower the  pressure a t  
the  base of t he  model and t o  ensure choking of t he  mass-flow control  
plugs. 

Detai ls  of t he  model including representative cross sections, t he  
i n t e rna l  ducting, &he posi t ions  of the  remotely actuated mass-flow con- 

1 

t r o l  plugs, the  25 fuselage nose droop, and the  4O downward i n l e t  cant 

a re  shown i n  f igure  2. 
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The i n l e t  d e t a i l s  of the  various configurations t e s t ed  a r e  shown i n  
f igures  3 and 4. A l l  configurations t e s t ed  had the  i n l e t  compression 
cone mounted d i r ec t l y  on the  fuselage with t he  cone undercut from i t s  
apex t o  the  inboard cowl l i p .  This undercut f a i r e d  smoothly i n t o  the  
fuselage boundary-layer d iver te r  w a l l .  The i n l e t  was wrapped around t he  
fuselage i n  order t o  maintain a constant fuselage boundary-layer removal 

1 height of 1- times the  estimated boundary-layer thickness. This height 2 
was based on t he  r e s u l t s  of reference 3, which did not include throat  
bleed. The no-bleed and porous-surface bleed i n l e t s  were geometrically 
similar ,  t he  only difference being the  addit ion of t he  porous surface. 
The locat ion of t h i s  porous material  i s  indicated i n  f igure  4(a) as  a 
shaded area. The f i r s t  throat  f l u sh  s l o t  t e s t ed  i s  i l l u s t r a t e d  i n  f i g -  
ure 4 (b) .  Another cone and cowl block weye used f o r  the  i n l e t  with the  
38' cowl-lip parameter Q2. With t h i s  i n l e t ,  two posit ions of the  throat-  

bleed s l o t  were tes ted.  After  t he  i n i t i a l  run, the  s l o t  was moved 1/2 
inch rearward t o  obtain the  more gent le  curvature shown i n  f i gu re  4(c) .  
The bleed flow, which discharged a t  t he  base of the  model, w a s  regulated 
by plugs (as seen i n  f i g .  2 )  . 

Instrumentation f o r  t h e  flow survey ahead of the  i n l e t  ( s t a t i on  40.6) 
consisted of two 6O half-angle wedge bars  on t he  l e f t  s ide  of the  fuse- 
lage f o r  obtaining t he  l o c a l  Mach number and t he  l o c a l  flow angle. On 
the  r i gh t  side,  a t  t h e  same s ta t ion,  were three  rakes, each consist ing 
of nine to ta l -pressure  tubes and one s ta t ic-pressure  tube. These rakes 
were used t o  determine t he  fuselage boundary-layer thickness and, i n  
conjunction with the  wedge data, t o  detect  any total-pressure loss  ahead 
of the  i n l e t .  The model was a l so  t e s t ed  with 18 total-pressure tubes and 
two s ta t ic-pressure  tubes placed i n  each i n l e t  cowl at  s t a t i o n  46.7. 
These rakes were used f o r  t h e  determination of t he  i n l e t  total-pressure 
contours, and were removed f o r  the  general  data  presented herein. Two 
dynamic pickups were located i n  t he  subsonic d i f fuser  i n  order t o  detect  
s ta t ic-pressure  f luctuat ions .  

The di f fuser-exi t  rakes ( f i g .  2, s t a t i on  71.1) were located a t  the  
point  where the  two ducts joined i n t o  a common duct. The s i x  r a d i a l  
rakes consisted of s i x  to ta l -pressure  tubes each. These tubes were lo-  
cated at the  centroids of equal areas. Also located at  t h i s  s t a t i on  
were twelve wal l  s ta t ic-pressure  tubes, one at the  end of each rake. A t  
model: s t a t i on  75.00, the  mass-flow measuring s ta t ion,  were located e ight  
w a l l  s ta t ic-pressure  tubes equally spaced - four on the  centerbody and 
four on t he  outer duct w a l l .  I n  computing the  mass-flow r a t i o  a t  t h i s  
s ta t ion ,  the  flow was assumed t o  be choked at  t he  geometric minimum area  
determined by the  mass-flow-control-plug se t t ing .  The d i f fuser  t o t a l -  
pressure recovery was computed using t h i s  mass flow and the  s t a t i c  pres- 
sure ahead of the  rake s ta t ion .  
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The subsonic-diffuser area-variat ion curves a re  presented i n  f igure  
5 .  The posit ions of the  measuring s ta t ions  and some representative duct 
cross sections a r e  indicated.  These curves a re  f o r  f a i r e d  cones, t h a t  
i s ,  the  increase i n  a rea  caused by the  bleed s l o t s  is not included. 

The bleed-duct system performance was determined with the  use of 
four to ta l -pressure  and two s ta t ic-pressure  tubes i n  each of the  two 
bleed-discharge ducts ( s t a t i on  71.6) . 

Only the  model a x i a l  force  was measured by the  i n t e rna l  strain-gage 
balance. The axial-force coeff ic ient  presented excludes the  base pres- 
sure forces  and the  t h ru s t  forces  produced by both the  main-duct and the  
bleed-duct flows. The duct t h ru s t s  were defined as  the  change i n  momen- 
tum from the  f r e e  stream t o  t he  duct e x i t .  

The invest igat ion was conducted a t  free-stream Mach numbers of 1.5, 
1.8, and 2.0 over a range of bleed-duct and main-duct mass flows and 
angles of a t tack.  The Reynolds number range f o r  t he  t e s t  was 4 . 1 ~ 1 0 ~  t o  
5 .3~106 per foo t .  

RESULTS AND DISCUSSION 

The flow conditions ahead of the  i n l e t s  a r e  presented i n  f igure  6. 
A t  a free-stream Mach number of 2.0, the  l oca l  flow i s  nearly a l ined 
with the  i n l e t  when t he  model i s  a t  an angle of a t t ack  of 2O ( f i g .  6 ( a ) ) .  
The general increase i n  l o c a l  Mach number ahead of t he  i n l e t  over f r ee -  
stream Mach number and i t s  va r ia t ion  between wedge posit ions due t o  the  
nose and canopy i s  a l so  shown. The pi to t -pressure-ra t io  curves show the  
boundary-layer p ro f i l e  including the  estimated thickness. When the  p i t o t -  
pressure recovery i s  compared with normal-shock recovery a t  the  indi-  
cated l oca l  Mach number, no s ign i f ican t  loss  i n  t o t a l  pressure ahead of 
the  i n l e t  i s  apparent. The boundary-layer-removal height was nearly 1.5 
times the  boundary-layer thickness as  estimated. 

The flow f i e l d  with t h e  canopy removed and the  nose f a i r e d  over (see 
f i g .  2) is-shown i n  f igure  6(b).  A comparison of f igure  6(a) with 6(b) 
indicates  t h a t  the  addit ion of the  canopy increased the  l oca l  Mach number, 
pa r t i cu la r ly  i n  the  region of the  upper wedge. However, the  boundary- 
layer thickness was v i r t u a l l y  unaffected. 

The performance curves f o r  t he  configurations a re  presented i n  f i g -  
ure 7. The performance parameters a re  p lo t ted  against engine mass flow, 
which d i f f e r s  from i n l e t  flow by the  amount of bleed-duct flow. The 
mass-flow r a t i o s  were referenced t o  the  projected cowl-lip area  and, 
since the  cone t i p  was on the  fuselage ( f i g .  4 ( a ) ) ,  values of supercri-  
t i c a l  mass-flow r a t i o  greater  than uni ty  theore t ica l ly  could be and ex- 

.. perimentally were obtained. On these f igures  a flagged symbol is  used 
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t o  indicate  the  minimum s t ab l e  mass flow, defined as  the  lowest mass 
flow reached before the  f u l l  amplitude of the  s ta t ic-pressure  f luctua-  
t i ons  i n  the  duct exceeded 5 percent of the  free-stream t o t a l  pressure. 
The minimum mass flow presented a t  Mach number 1.5 represents the  l i m i t  
of t he  mass-flow-control-plug t rave l ,  and a l l  i n l e t s  were s t ab l e  t o  t h i s  
l i m i t .  Lines of constant corrected a i r  flow a r e  indicated on a l l  in -  
t e r n a l  performance curves. A t  any given Mach number t he  performance r e -  
mained e s sen t i a l l y  constant f o r  angles of a t t ack  of -2' t o  2'. A t  
angles above 5' the  i n t e rna l  performance decreased rapidly.  A t  zero 
angle of at tack,  the  minimum axial-force coef f ic ien t  increased with de- 
creasing values of free-stream Mach number. 

The performance charac te r i s t i cs  f o r  the  f i r s t  posi t ion of the  in -  
t e r n a l  f l u sh  s l o t  f o r  the  i n l e t  with = 38' i s  presented i n  f igure  
7(d) .  A var ia t ion  i n  the  longi tudinal  posi t ion of the  f l u sh  s l o t  ( f i g .  
4 ( c ) )  f o r  t h i s  i n l e t  had no discernable e f f ec t  on the  performance; 
therefore,  the  da ta  f o r  t he  second posi t ion a r e  not presented. 

The var ia t ion  i n  performance obtained a t  cruise  angle of a t t ack  
(a = 2') with changes i n  bleed configuration i s  more apparent i n  t he  
summary p lo t  ( f i g .  8) . For t he  purpose of external  drag comparison, 
these  data  a r e  p lo t ted  against  t o t a l  inlet-mass-flow r a t i o  (engine mass 
flow plus bleed-duct mass flow). The porous-surface and f lush-s lo t  
i n l e t s  show an increase i n  maximum total-pressure recovery over the  no- 
bleed i n l e t  a t  a l l  Mach numbers. 

From op t i ca l  observations, it was apparent t h a t  the  regions of 
rapidly  decreasing pressure recovery at reduced mass flows were caused 
by asymmetrical operation .of t he  twin-duct system. When the  mass-flow 
r a t i o  was reduced, t he  el = 38' bleed i n l e t  maintained t he  high pres- 
sure  recovery f a r t h e r  i n t o  the  subc r i t i c a l  region. This would be ex- 
pected since, with the  oblique shock f a r t h e r  ahead of the  cowl l i p ,  t he  
normal-shock recovery air would not enter  t he  cowl u n t i l  a lower value of 
mass flow was reached. 

A l l  t h e  bleed configurations showed a c3ecreas.e i n  s t ab l e  subc r i t i -  
c a l  inlet-mass-flow range when compared with the  no-bleed i n l e t .  A t  
Mach numbers 2.0 and 1.8 the  onset of i n s t ab i l i t y ,  however, occurred a t  
comparable engine mass flows ( i n l e t  mass flow minus bleed mass flow). 

The curves presented i n  f igure  9 represent t he  optimum i n l e t  operat- 
ing point  f o r  each Mach number and includes (1) t he  r a t i o  of engine 
t h ru s t  f o r  the  given to ta l -pressure  recovery Fn t o  the  engine t h ru s t  of 
a present day engine at an a l t i t u d e  of 35,000 f e e t  and 100 percent pres- 
sure recovery FnYi; (2) t he  drag Ds associated with discharging the  

bleed a i r  from a sonic e x i t  p a r a l l e l  t o  t he  free-stream direct ion ( t h i s  
drag may be pessimistic s ince  the  pressure recovery used i n  t h e  calcula-  
t i o n  was  the  value measured i n  t he  t e s t  which was low because of t he  
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dumping losses) ;  (3) the  difference between the  minimum axial-force coef- 
f i c i e n t  indicated on f igure  8 and t he  operating point of t he  i n l e t  ADa. 
Although the  f lush-s lo t  ez = 38' i n l e t  showed the  highest pressure r e -  
covery, the  propulsive-thrust evaluation showed the  f lush-slot  OZ = 40' 
i n l e t  t o  be superior over most of t he  t e s t  range. A t  Mach number 2.0, 
the  propulsive t h ru s t  was increased 4 percentage points by t h e  use of 
i n t e rna l  throat-bleed s l o t s .  The lower thrust-minus-drag performance 
of the  8% = 38O i n l e t  was caused by the  higher a x i a l  force  produced by 
the  larger  cowl used with t h i s  configuration. 

W 

2 A t  Mach numbers 2.0 and 1.8, i n t e rna l  bleed reduced t he  magnitude 
of the  d i f fuser  s ta t ic-pressure  f luctuat ions  i n  the  mass-flow range 
above the  minimum s t ab l e  point ( f ig .  10). The f a i r i ng .  of the  curves be- 
tween data  points was guided by s ta t ic-pressure  t races  obtained continu- 
ously during control-plug t rave l .  The arrows indicate  the  point where 
the  amplitude was s ign i f ican t ly  greater  than 5 percent of f ree-stream 
t o t a l  pressure. No data  were taken below t h i s  mass flow i n  order t o  
avoid any damage t o  the  balance linkage. Pressure t races  (not presented) 
indicated pressure f luctuat ions  of l e s s  than 2 percent f o r  the  porous- 
surface i n l e t  at a l l  Mach numbers and l e s s  than 1 percent a t  Mach number 
1.5 f o r  a l l  t he  i n l e t s  over t he  given range of mass flow and angle of 
at tack.  

The asymmetrical operation of the  i n l e t s  a t  Mach number 2.0 i s  ap- 
parent i n  the  schl ieren photographs ( f ig .  11).  These photographs cover 
a range of mass flow f o r  both of the  f lush-s lo t  i n l e t s ,  8% = 40° and 38O. 
The f i r s t  photograph f o r  each i n l e t  represents t he  point of peak recov- 
ery. For t he  8% = 40° i n l e t  a l l  t he  subc r i t i c a l  sp i l l age  was from one 
i n l e t ,  the  other remaining superc r i t i ca l  throughout t he  e n t i r e  mass-flow 
range. Subcr i t i ca l  operation was obtained with both i n l e t s  f o r  a l imited 
mass-flow range f o r  the  i n l e t  O2 = 38' configuration. A t  very low 
mass flows, however, with t h i s  i n l e t  the  sp i l l age  again took place from 
one s ide  only. 

I n l e t  and di f fuser-exi t  total-pressure contours ( f ig .  12) are  shown 
fo r  ranges of mass flow, angle of at tack,  and free-stream Mach number. 
Since the external  configurations were ident ical ,  the  i n l e t  contours ob- 
ta ined without bleed a re  presented with e x i t  contours obtained with t he  
BZ = 40' f lush-s lo t  i n l e t .  The points were matched at  comparable t o t a l  
i n l e t  mass flows. Near c r i t i c a l  mass flow at Mach number 2.0 ( f ig .  12 ( a ) ) ,  
the  general l e v e l  of the  i n l e t  recovery i s  near theoret ical ,  but  l o c a l  
areas of higher than theore t ica l  recovery ( fo r  t h i s  configuratian) in -  
d icate  multishock compression due t o  shock - boundary-layer in teract ion.  
The asymmetrical operation of t he  i n l e t s  a t  low mass flows is apparent 
i n  f igure  12(b). Boundary-layer thickening and flow separations i n  the  
leeward areas a t  t h e  i n l e t  s t a t i on  occurred at an angle of a t t ack  of 10' 
(f igs .  12(c) and ( a ) ) .  For points near c r i t i c a l  mass flow a t  Mach num- 
bers  1.8 and 1.5 ( f igs .  12 (e)  and (g), respectively), t he  i n l e t  flow i s  



symmetrical and the total-pressure recovery i s  near theoret ical  fo r  t h i s  
configuration. Regions of high recovery a t  the i n l e t  did not, i n  general, 
carry s t raight  back t o  corresponding positions a t  the diffuser ex i t .  The 
asymmetry of the i n l e t  flow a t  Mach 1.8 (f ig .  12 ( f ) )  i s  reversed from 
tha t  a t  Mach 2.0 ( f ig  . 12 (b) ) . Here the l e f t  i n l e t  i s  operating a t  or 
near c r i t i ca l ;  whereas i n  the r ight  i n l e t  there are two d is t inc t  regions 
of co~qression. The leve l  of recovery near the outey cowl l i p  i s  ap- 
proximately equal t o  normal-shock recovery; whereas the remainder of the 
i n l e t  face exhibits the high.recovery associated with multishock com- 
pression. This familiar pattern i s  caused by the intersection of the 2 OJ 
oblique and normal shocks i n  f ront  of the i n l e t  a t  subcri t ical  mass flows. M 

A t  a given corrected engine a i r  flow (near c r i t i c a l ) ,  the various 
bleed systems raised the l eve l  of recovery, but did not, i n  general, 
reduce the total-pressure distortions a t  the diffuser ex i t  ( f ig .  13). 
Although these contours are f o r  the same diffuser-exit  Mach nulliber, the 
external shock structures were s l ight ly  different because of different  
i n l e t  mass flows. Diffuser-exit distortions are  defined as the rat io ,  
i n  percent, of the difference between maximum and minimum loca l  t o t a l  
pressure t o  the duct average t o t a l  pressure. The minimum t o t a l  pressure 
used i n  the calculation was the lowest value tha t  was measured a t  the 
ex i t  rakes. These values of dis tor t ion are  plotted over a range of cor- 
rected engine a i r  flow (fig.  14).  A t  the given angles of attack, a de- 
creasing trend with decreasing a i r  flow i s  indicated u n t i l  the onset of 
twin-duct asymmetry. A t  t h i s  point there i s  a marked increase i n  the 
dis tor t ion level.  A fur ther  reduction i n  the a i r  flow, if pulsing was 
not encountered, again resulted i n  decreasing flow distortions i n  most 
cases. A t  an angle of attack of lo0, i n  the symmetrical flow region the 
general leve l  of dis tor t ion increased s l ight ly  fo r  a l l  in le t s .  

The effect  of bleed-duct mass flow on the performance of flush-slot 
i n l e t ,  f o r  = 38' and zero angle of attack i s  presented i n  figure 
15. For Mach number 2.0 a t  a constant corrected engine a i r  flow (with 
the i n l e t  operating subcri t ical)  6 percent bleed flow was required t o  
obtain qaximum recovery. The recovery increased from 0.83 with no bleed 
t o  0.88 with optimum bleed. As the bleed flow increased, the normal 
shock approached the  cowl l i p  and the i n l e t  mass-flow r a t i o  increase 
resulted i n  reduced normal-shock spi l lage drag. A t  the two lower Mach 
numbers the gains i n  total-pressure recovery were not as large as those 
obtained at Mach number 2.0. Moreover, a greater amount of bleed-duct 
mass flow was required t o  obtain optimum recovery. 

Only the total-pressure recovery and the drag associated with dis- 
charging the various amounts of bleed-duct mass flow were considered 

-c 

i n  preparing a propulsive-thrust curve f o r  the eZ = 38' i n l e t  (fig.  
16).  The total-pressure recoveries were taken d i rec t ly  from figure 15, c7 

arid the bleed-duct discharge drag was computed from the following equa- 
t i on  

5 

Ds = q,(v0 - v.1  - (q, - pol% 
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A t  Mach number 2.0, optimum propulsive t h ru s t  was  obtained with about 6 
percent bleed flow. A t  Mach n u h e r s  1.8 and 1.5, the  gains i n  propulsive 
th rus t  with bleed were much l e s s  than those obtained at Mach nuniber 2.0. 

SUMM4RY OF RESULTS 

An experimental investigation t o  evaluate the  e f f ec t s  of several  
w throat  bleed configurations on the  performance of a half-conical  side- 
(I, 
-I i n l e t  system yielded the  following r e su l t s :  
IP 

1. A t  a free-stream Mach nuniber of 2.0, t h e  propulsive t h ru s t  was 
increased 4 percentage points when a f lush-s lot  a i r  bleed was  added t o  
the i n l e t  throat .  

2. The various bleed systems increased the  maximum pressure recovery 
over t he  no-bleed i n l e t ,  but d id  not, i n  genera l ,  reduce the  pressure 
d i s to r t ions  at the  di f fuser  e x i t .  

N 
3. A l l  t h e  bleed configurations t e s t ed  showed a decrease i n  s t ab l e  

I - subc r i t i c a l  inlet-mass-flow range when compared with t he  no-bleed i n l e t .  
A t  Mach numbers 2.0 and 1.8, the  onset of i n s t a b i l i t y  occurred at com- 
parable engine mass flows ( i n l e t  mass flow minus bleed mass flow). 

Lewis F l igh t  Propulsion Laboratory 
National Advisory Committee f o r  Aeronautics 

Cleveland, Ohio, October 7, 1955 
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Figure 1. - Model in tunnel. 



Figure Z .  - Slretch or model with representative cross sections. ( ~ l l  dimensions In ~nches.) 
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(b) Porous surface cones. 

i' 
, " (c) Internal f lush-slob m a r ; ;  

cowl-lip parameter, 38'. 

Figure 3. - Inlet components. 
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(b) Flush slot;  cowl-lip parameter, 40'. 

J 

(c) Flush slot;  cowl-lip parameter, 38'; s l o t  gap ( f i r s t  and second positions), 0.200 . I  ' 
' I  ' 

inches. ' 3  I B , , , A ,  (I 1 

, ,  , . , ' . .' ' .; 
Figure 4. - Concluded. Inlet  -configuration details .  - 8  

1 
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(a) With canopy. 

Figure 6. - Flow conditions ahead of inlets. 
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Pitot-pressure ratio, P1/PO 

(b) Without canopy. 

Figure 6. - Concluded. Flow conditions ahead of inlets. 
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Axial-force coefficient. Bleed-duct ~atal-pressure recovery, 
C 
Da 

. mass-flow ratio, 
mdmo 

PdPo 



(a) Free-stream Mach number. 2.0. (b) Free-stream Mach number, 1.6. (0) Pree-stream Mach numbes, 1.5. 

- - 
- - - 
I '  6 -  

Figure 8. - Inlet performance comparison; cruise angle of attack, 2O. 
, - .  - - I 
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1. 1 Angle of attack, 

(a)  No-bleed in le t ;  free-stream Mach number, 2.0. 
10 

0 

(b) No-bleed in le t ;  free-stream Mach number, 1.8. 

S 
rl (c)  Flush-slot in le t ;  cowl-lip parameter, 40'; free-stream Mach number, 2.0. 

- 9 1  

c (a) Flush-slot in le t ;  cowl-lip parameter, 40 o ; free-stream Mach number, 1.8. 

1 2 
%I 

2 

(e)  Flush-slot in le t ;  cowl-lip parameter, 38'; free-stream Mach number, 2.0. 

I 
I 

I 

.3 .4 .5 .6 .7 .8 .9 1.0 
Engine mass-f low ra t io ,  m3/% . 

( f )  Flush-slot in le t ;  cowl-lip parameter, 38'; free-stream Mach number, 1.8. 

Figure 10. - Effect of internal  bleed on diffuser static-pressure fluctuations. 
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Tube locations7 Rake locations- 

CE-4 back P L ~ E  

(f) = 1.8; a = 0'; p3/P0 = 0.901; m3/mo = 0.520; mb/mo = 0.113. 

( g )  M0 = 1.5; a = 0'; P3/P0 = 0.959; m3/m0 = 0.774; mdmo = 0.078. (h) No = 1.5; a = oo; P3/P0 = 0.987; m3/mo = 0.520; mb/nlo = 0.104. 

0 

Figure 12. - Concluded. Inlet and diffuser-exit total-pressure contours for flush-slot inlet; cowl-lip parameter, 40 . 
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No-bleed i n l e t ;  m3/mo = 0.953; P3/p0 = 0.828; 
p3/P0 = 0.765; maximum d i s t o r t i o n ,  9.1 p e r c e n t .  mb/mo = 0.083; p3/p0 = 0.838; p3jp0 = 0.775; 

maximum d i s t o r t i o n ,  7 .8  pe rcen t .  

F lu sh - s lo t  i n l e t ;  E l L  = 40'; m3/mo = 0.989; F lu sh - s lo t  i n l e t ;  El1 = 38'; m3/mo = 0.867; 

mb/mO = 0.059; p3/po = 0.864; P ~ / P ~  = 0.797; mb/mO = 0.093; P3/P0 = 0.880; p3/P0 = 0.810; 
maximum d i s t o r t i o n ,  9.0 p e r c e n t .  maximum d i s t o r t i o n ,  11.4 p e r c e n t .  

( a )  Correc ted  engine a i r  f low, 26.6; zero  angle  of a t t a c k .  

Figure 13. - Dif fuse r - ex l t  t o t a l - p r e s s u r e  contours  w i th  and wi thout  b l eed  a t  Mach number, 2.0. 
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No-bleed i n l e t ;  m3/mo = 0.891; p3/p0 = 0.731; Porous-surface b l eed  i n l e t ;  m3/mo = 0.878; 

p3/p0 = 0.670; maximum d i s t o r t i o n ,  17 .1  mb/mo = 0.058; pIS/p0 = 0.714; = 0.653; 

percent .  maximum d i s t o r t i o n ,  17 .2  pe rcen t .  

F lush - s lo t  i n l e t ;  e2 = 40'; m3/mo = 0.905; 
mb/mo = 0.047; p3/p0 = 0.738; p 3 / ~ 0  = 0.672; 
maximum d i s t o r t i o n ,  18 .3  pe rcen t .  

F lush - s lo t  i n l e t ;  'JL = 38'; m3/mo = 0.834; 
mb/mo = 0.054; P3/P0 = 0.803; p3/p0 = 0.680; 
maximum d i s t o r t i o n ,  14 .3  pe rcen t .  

( b )  Corrected engine a i r  f low,  28.2; angle  of a t t a c k ,  l o 0 .  

F igure  13 .  - Concluded. D i f fuse r - ex i t  t o t a l - p r e s s u r e  contours wi th  and without b leed a t  Mach 
number, 2.0. 
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I n l e t  Cowl-lip 
configurat ion parameter, 

02, 
deg 

0 No bleed 40 
Porous sur face  40 

0 Flush s l o t  40 
a F ~ U S ~  s l o t  38 

Sol id  symbols i nd i ca t e  twin- 
duct flow asymmetry 

/ 
1 

1 - 1 1  I 1  1 r I 
- 

I 

( a )  Angle of a t tack ,  zero. 

Corrected engine air  flow, (%g3 
(b) Angle of a t t ack ,  10'. 

Figure 14. - Diffuser-exi t  t o t a l -p re s su re  d i s t o r t i o n s  at Mach number, 2 .O. 
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